
CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111
2/2022fa/

Today: Functions part 2

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements
● Last time

○ Functions
● This time

○ More functions
● Announcements

○ Exercises checked off on MATLAB grader. You should have just been
enrolled earlier today to MATLAB grader. Try out Exercise 0 before
tomorrow’s section!

○ Project 1 grades released soon…
○ Project 3 released later this week

Tips for succeeding in this class

● This is the point in the class where things start to snowball.
○ Everything we have covered until now will continue to show up
○ Project 3 is released in a few days… take this time to make sure you understand everything

until now
● Don’t let your project partner do all of the work

○ Make sure you have at least some knowledge about how each project problem is solved.
● Never approach a problem with “I don’t know” or “I’ll just go to office hours

and figure it out with the TA”.
○ Try to understand what the problem is asking for before you talk to course staff.
○ Attempt each problem before you get help!

General form of a user-defined function
function [out1, out2, ...] = functionName(in1, in2, ...)
% 1-line comment to describe the function
% Additional lines of comments to describe the inputs and outputs

[Code that, at some point, assigns values to output variables or
 does something]

If the function has no inputs:
function [out1, out2, ...] = functionName()

If the function has no outputs:
function functionName(in1, in2, ...)

General form of a user-defined function
function [out1, out2, ...] = functionName(in1, in2, ...)
% 1-line comment to describe the function
% Additional lines of comments to describe the inputs and outputs

[Code that, at some point, assigns values to output variables or
 does something]

● in1, in2, ... must be defined when the function begins execution.
Variables in1, in2, ... are called input parameters or inputs or
arguments and they hold the function inputs used when the
function is invoked (called).

● out1, out2, ... are not defined until the code in the function
assigns values to them and are called the output parameters or
outputs

Process for writing a function

1. Identify candidates
a. Look for opportunity to reuse logic or improve clarity

2. Design interface
a. Choose function name, input parameters, outputs and/or effects

3. Implement function
a. Write code according to specifications

4. Test
a. Try it out (and try to break it–test for all possible cases)

5. Use

Design: set the specifications

Returning versus printing
function [x, y] = polar2xy_out(r, theta)
% convert polar (r, theta) to cartesian
% (x,y)

rads = theta*pi/180;
x = r*cos(rads);
y = r*sin(rads);

function polar2xy_print(r, theta)
% convert polar (r, theta) to cartesian
% (x,y)

rads = theta*pi/180;
x = r*cos(rads);
y = r*sin(rads);
fprintf('x = %f, y = %f', x, y)

Code to call the above function:

% Convert polar (r1, t1) to Cart (x1, y1)
r1 = 1; t1 = 30;
[x1, y1] = polar2xy_out(r1, t1);
plot(x1, y1, 'b*')

Code to call the above function:

% Convert polar (r1, t1) to Cart (x1, y1)
r1 = 1; t1 = 30;
polar2xy_print(r1, t1);
plot(x1, y1, 'b*')

This plot would not work because the
cartesian coordinates were not outputs
of the function

Outputs are useful when you need to
use values outside of a function

Subfunctions, also called “local functions”
● There can be more than one

function in an m-file
● If you are writing a function file,

the first function is the main
function and must have the
same names as the file name
○ Remaining functions are

subfunctions, accessible
only by the functions in the
same m-file

function [avg, med] = mystats(x, y ,z)
% Compute statistics of the numbers x, y, z

avg = mymean(x, y, z);
med = mymedian(x, y, z);
end

function a = mymean(x, y, z)
% Compute the mean of x, y, z

a = (x + y + z)/3;
end

function m = mymedian(x, y, z)
% Compute median of x, y, z

[code]
end

Two examples of subfunctions

Reasons to use functions
● A function can be tested easily

and lets you break your larger
problem into more manageable
tasks

● Keep your main driver
function/script clean by keeping
the detailed code in
functions–reflects top-down
design

● More maintainable software

When we were tasked with drawing nested stars, we can
break down the problem and first write a function that
draws one star.

function DrawStar(xc,yc,r,c)
% Adds a 5-pointed star to the current window
...
end

Reasons to use functions
● A function can be tested easily

and lets you break your larger
problem into more manageable
tasks

● Keep your main driver
function/script clean by keeping
the detailed code in
functions–reflects top-down
design

● More maintainable software

% Put dots in the area between circles with

radii R and (R-1)

for R = 1:c

 % Draw d dots

 for dotNum = 1:d

 radius = rand + R-1;

 theta = rand*(360);

 [x, y] = Polar2xy(radius, theta);

 DrawColorDot(x, y, rem(R,2));

 end

end

Reasons to use functions
● A function can be tested easily

and lets you break your larger
problem into more manageable
tasks

● Keep your main driver
function/script clean by keeping
the detailed code in
functions–reflects top-down
design

● More maintainable software

Today: I write a function ePerimeter(a,b) the
computes the perimeter of the ellipse

During this year: You write software that makes
extensive use of ePerimeter(a,b). Imagine
hundred of programs that call (use) ePerimeter.

Next year: I discover a better way to approximate
ellipse perimeters. I change the implementation of
ePerimeter(a,b). You do not have to change your
programs that call function ePerimeter at all!

Script versus function
A script is executed line-by-line just as if you are
typing it into the Command Window

● The value of a variable in a script is stored in
the Command Window Workspace

A function has its own private (local) function
workspace that does not interact with the workspace of
other functions or the Command Window workspace

● Variables are not shared between workspaces
even if they have the same name

You can use the keyword global to make global variables, but we don’t need to worry about that in CS 1112

% Convert polar (r1, t1) to Cart (x1, y1)
r1 = 1; t1 = 30;
[x1, y1] = polar2xy_out(r1, t1);
plot(x1, y1, 'b*')

function polar2xy_print(r, theta)
% convert polar (r, theta) to cartesian
% (x,y)

rads = theta*pi/180;
x = r*cos(rads);
y = r*sin(rads);
fprintf('x = %f, y = %f', x, y)

Calling a function with outputs
When I run a script that calls a function, a separate workspace is created for the
function variables:

function z = funct1(v, w)
x = 0.5*v;
z = x + w;

x = 10; y = 20;
z = funct1(x, y);
disp(z)

Script workspace: Function workspace:

x

y

z

v

w

x

z

10

20

25

10

20

5

25

Ending functions
end can (and sometimes should) terminate a declared function. It’s usually
optional but use end for better code readability. end is required in these cases:

● If a file contains functions, and one function terminates with end, then every
function in the file must be terminated with end

● If a file contains nested functions (won’t need to do this in CS 1112), then
every function must be terminated with end

● Functions in scripts must be terminated with end

If you don’t want to deal with the intricacies,
always terminate your functions with end

Terminating with end examples

function [x, y] = polar2xy(r, theta)
% convert polar (r, theta) to cartesian
% (x,y). theta in degrees.

rads = theta*pi/180;
x = r*cos(rads);
y = r*sin(rads);

end

% script to compute cartesian coords.
% from polar coords.

r1 = 2;
theta1 = 30;
[x,y] = polar2xy(r1, theta1);

function [x, y] = polar2xy(r, theta)
% convert polar (r, theta) to cartesian
% (x,y). theta in degrees.

rads = theta*pi/180;
x = r*cos(rads);
y = r*sin(rads);

end
If you want to have functions
in your script, the functions
should be placed at the end
of the script

Exercise to try on your own (similar to a previous prelim question)

Script Function (in foo.m)

a = 2;
b = 8;
c = foo(b, a+1);
fprintf('a is %d\n', a)
fprintf('b is %d\n', b)
fprintf('c is %d\n', c)

function c = foo(a, b)
c = a + b;
b = b - 7;
a = b;
b = a;

What does this script output?

